
LATEX is Radical - Part II
Slightly beyond the basics.

Version 1.1

David Goulette

April, 23 2014

Contents

1 Before you begin reading... 1

2 Indroduction 2

3 Multiple columns and paper orientation 3

4 Adding pictures to your document 8
4.1 Picture file types . 8
4.2 PGF/TikZ . 9
4.3 Adding figures with graphicx . 10

4.3.1 Adding pictures in a fixed position . 11
4.3.2 Captions and floats . 16

5 How to make a bibliography with BiBTEX 21

List of Figures

1 A Mad Tea-Party . 17
2 Alice . 18
3 A circle on the Riemann sphere. 19
4 A figure with subfigures . 20

1 Before you begin reading...

Make sure you have downloaded all of the necessary files for compiling this document. If you want
to build this .tex file you need the following supplemental files:

• IntroToLaTeXpart2-version1.0.tex

• IntroToLaTeXpart2-version1.0.pdf

• alice.jpg

• teaparty.jpg

• RiemannSphereCircle.pdf

• myreferences.bib

1

All of these files can be found on my website:

http://www.sjsu.edu/people/david.goulette/courses/latex/

You need to download all of the above files and save them in the same directory. If you want
to build the .tex file it needs to have the three picture files in the same directory to work and also
the .bib file with the bibliography references. I explain the details of how you can add pictures to
documents in section 4. And I explain how to make a bibliography in section 5.

2 Indroduction

Welcome to the second part of my introduction to LATEX! In this document I will introduce a variety
of important LATEX skills that you might not need quite as frequently as those found in part 1, but
you will benefit from knowing them. I am separating this document from the “basic introduction”
for a few reasons.1 One reason is that part 1 covered basic topics, skills and concepts that one must
know in order to branch out and learn all of the many options LATEX has to offer. I have attempted
to choose material in such a way that after you read my material, you will find that most new things
you want to learn will just me a variation on what I have already taught you (up to a point of
course... there are some advanced things that LATEX can do which I will not mention). So I wanted
to stick to basic concepts that come up more frequently in part 1. Admittedly my bias for my choice
of topics was toward writing mathematical papers, but I tried to emphasize the key LATEX skills
that are needed in general. This document, on the other hand, will cover things that you might
need less frequently, but you will need them eventually if you do anything slightly more advanced or
professional. Another reason that I wanted to separate this section is that this document will need
more than just the .tex file to compile it. That is because I intend to teach you how to add pictures
(which requires separate picture files for each picture you want to add to your document) and I also
want to teach you how to make a bibliography with BiBTEX (which requires a separate .bib file).
Since I want to give you my code so that you can compile it from scratch yourself, you will need
to download a few files and have them all in the same folder/directory on your computer when you
compile. This is a little more complicated than what I wanted to explain in the basic introduction.
Finally, just about every section in this paper will only introduce you to the details of a concept,
show you some examples, and then direct you to outside sources that are far more complete than I
will be here. It is my hope that I will have helped you get past the initial LATEX learning curve and
that you will be able to teach yourself whatever you want to know with free online sources.

As you know, this is a work in progress and you are seeing my initial rough drafts of this material,
so here is a list of the things I plan to have in this document (in the order I plan to write them, but
not necessarily the order that they will appear in the final version).

1. How to have multiple columns in all or part of a document.

2. How to add pictures/figures to your document, label them and reference them.

3. How to create a basic bibliography using BiBTEX.

4. How to create your own LATEX commands, macros and functions that do whatever YOU want
them to do!

5. How to create formatted theorems, corollaries, proofs, definitions, etc. using amsthm. Also
how to label them and reference them of course.

6. Finally, a section of references for further information and advice that goes beyond what I
have explained. This section will possibly have some advanced examples like, tables, tabbing,
commutative diagrams (with tikz), variations on the equation and align environments etc.
Mostly this section will be intended to make you aware of what LATEX can do and give you
pointers to the resources where you can learn it on your own.

1Just in case you have not read the first part, you can get it here:
http://www.sjsu.edu/people/david.goulette/courses/latex/

2

http://www.sjsu.edu/people/david.goulette/courses/latex/
http://www.sjsu.edu/people/david.goulette/courses/latex/

3 Multiple columns and paper orientation

It is very easy to make your document have two columns globally. When I say “globally” I mean
that your entire document will have two columns. All you have to do is add an optional argument
to your \documentclass function at the very beginning of your preamble. Instead of

\documentclass{article}

do this instead:

\documentclass[twocolumn]{article}

Optional arguments to any document class go in square brackets before the curly braces. This two
column option creates global two-column format. Now, I can’t show you an example of this because
I don’t want two column format in this whole document! So you will have to try it on your own.

I use this often when I am writing quizzes or test for my students and I want to save paper. I
want the margins to be small so I can fit as much as I can on the page but I don’t want the lines to
stretch really wide across the page (which is hard to read). But aside from this, I like the look of
two columns because they are very easy to read (newspapers and professional websites usually have
narrow columns for this reason; you can read them faster). You will find that many professional
journals are published in two column format as well. Just in case you don’t like the amount of space
that is put between the columns, you can adjust this width with by adding the following line in your
preamble:

\setlength{\columnsep}{length}

The \setlength function sets the length of the first argument to be whatever length in you specify
in the second argument. So in this case we are setting the length of the column separation. And
of course the value for length can be whatever you want (as long as it fits inside of the margins!).
Also, the length you put in the middle can use any of the units we discussed in part 1. So you could
do this for example:

\setlength{\columnsep}{1cm}

By putting this in your preamble you are setting the column separation to be 1cm globally.
Sometimes, when I want two-column format, I will change the paper orientation to landscape as

well. Landscape with two-columns saves paper and is also very readable. You can accomplish this
with another optional argument in your document class declaration:

\documentclass[twocolumn, landscape]{article}

This will, of course, rotate your paper orientation by π radians.
But sometimes I want a bit more flexibility with multiple columns. Occasionally I want multiple

columns for just a portion of my document but not the whole thing. And sometimes you might want
three, or four columns instead of just two. In these cases you should opt for the multicol package.
(See the preamble to this document.) This package allows you to create easy multiple columns inside
of an environment like this:

\begin{multicols}{3}

Blah blah, text goes here...

\end{multicols}

And this is what you will
get. By-the-way, take care
to note that the package is

called multicol but the en-
vironment syntax has to have
multicols with an s on the

end. The above code will cre-
ate 3 columns because of the 3

in the second argument to the

3

multicols environment decla-
ration. So of course if you
want two columns, just put
a 2 instead. You can have
up to 10 columns using the
multicol package. Also it is
very important that if you de-
cide to use the multicols en-
vironment that you DO NOT
use the twocolumn option in
your \documentclass declara-

tion at the beginning of your
document (like I described ear-
lier). If you do them both,
they will clash and might give
you errors. The twocolumn op-
tion is a built in LATEX op-
tion. Side note: you will learn
that occasionally some packages
clash with basic LATEX func-
tions and sometimes different
packages will clash with each

other and give you errors. Since
packages are independently de-
veloped and freely available,
this is inevitable. But with
some experience (and good in-
ternet searching skills) you can
figure out what to do and what
not to do. (O.k., so I will end
this three column format now.)

You can adjust the width of the separation of the columns in the multicols environment in the
same way that I mentioned before. So you can set a global column separation in the preamble with
\setlength{\columnsep}{length} function and multicol will use that separation length. If you
don’t put this in your preamble then it will just use a default margin separation length. For this
document, I chose to put this in the preamble:

\setlength{\columnsep}{4mm}

So the 3 column text you see above has a 4mm separation between the columns. But the great thing
is that you can easily change the column separation settings in in the middle of the document by using
the same function right before the multicols environment declaration. This will override the global
setting in your preamble and it will only effect the multicolumn sections that follow the command.
None of the mulicolumn sections that precede the new \setlength function will be affected. So you
will see that my next multicolumn section below has a wider space than the one above. Another
useful thing that I will demonstrate here is how to add an optional center line between the columns.
This is accomplished with the following command: \setlength{\columnseprule}{length}. And
the length will be the thickness of the line. By default this thickness is set to 0, meaning there is
no line between the columns by default. I will show you an example of both of these things right
now using some dummy text created by the lipsum package.2 The only thing the lipsum package
does is create dummy text for demonstration purposes, which is exactly what I am doing here!

\setlength{\columnsep}{1cm}

\setlength{\columnseprule}{0.5pt}

\begin{multicols}{2}

\lipsum[1-2]

\end{multicols}

This block of code will create two columns of text, but before the multicolumn block stars, I set the
column width to be one centimeter (which overrides my 4mm global setting), and will put a thin
vertical line that is only a half of a point wide. Oh yeah, and the function \lipsum[1-2] will create
the first two paragraphs of dummy text from “Lorem ipsum dolor sit amet,...”, like this:

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur
dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus
sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in,
pretium quis, viverra ac, nunc. Praesent eget
sem vel leo ultrices bibendum. Aenean fau-
cibus. Morbi dolor nulla, malesuada eu, pulv-
inar at, mollis ac, nulla. Curabitur auctor sem-
per nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagittis
quis, diam. Duis eget orci sit amet orci dignis-
sim rutrum.

2For more information see:
http://www.ctan.org/pkg/lipsum

4

http://www.ctan.org/pkg/lipsum

Nam dui ligula, fringilla a, euismod sodales,
sollicitudin vel, wisi. Morbi auctor lorem non
justo. Nam lacus libero, pretium at, lobortis
vitae, ultricies et, tellus. Donec aliquet, tor-
tor sed accumsan bibendum, erat ligula ali-
quet magna, vitae ornare odio metus a mi.
Morbi ac orci et nisl hendrerit mollis. Sus-

pendisse ut massa. Cras nec ante. Pellentesque
a nulla. Cum sociis natoque penatibus et mag-
nis dis parturient montes, nascetur ridiculus
mus. Aliquam tincidunt urna. Nulla ullam-
corper vestibulum turpis. Pellentesque cursus
luctus mauris.

If you want a new multicolumn environment that does not have a ruled line between the columns,
all you have to do is reset the \columnseprule length to zero like this:

\setlength{\columnseprule}{0pt}

\begin{multicols}{2}

\lipsum[3]

\end{multicols}

Nulla malesuada porttitor diam. Donec fe-
lis erat, congue non, volutpat at, tincidunt tris-
tique, libero. Vivamus viverra fermentum felis.
Donec nonummy pellentesque ante. Phasellus
adipiscing semper elit. Proin fermentum massa
ac quam. Sed diam turpis, molestie vitae, plac-
erat a, molestie nec, leo. Maecenas lacinia.
Nam ipsum ligula, eleifend at, accumsan nec,

suscipit a, ipsum. Morbi blandit ligula feugiat
magna. Nunc eleifend consequat lorem. Sed
lacinia nulla vitae enim. Pellentesque tincidunt
purus vel magna. Integer non enim. Prae-
sent euismod nunc eu purus. Donec bibendum
quam in tellus. Nullam cursus pulvinar lectus.
Donec et mi. Nam vulputate metus eu enim.
Vestibulum pellentesque felis eu massa.

Here is one last thing about multicols that will be useful. When you are inside of the multicols
environment you will sometimes want to break to the next column in the same way you do a
\pagebreak. Fortunately a function that comes with the multicols package is \columnbreak

which does the trick. I will show you the code on page (page 6), since it is a little long, and the
result will be on it’s own page (page 7), to make it clear.

In the following example I am creating the first page in a basic algebra exam. I want it to be
two columns, I want a dividing line between the columns, but I also want to leave enough space
for students to work. After each of the first two questions I force some fixed vertical space with
\\[length] which we covered in part 1 of the LATEX introduction. But note that after the third
question I used \vfill and then a \columnbreak. This will ensure that the rest of the column is
filled with vertical blank space, and then the next question is forced to the top of the next column.
After the fourth question I want to leave lots of space for their work, so I use another \vfill and a
\pagebreak (since I want this to fill the rest of the page). Now it is important that you fill the rest
of the columns if you want it to stretch to the end of the page to get this result.

5

\setlength{\columnsep}{5mm}

\setlength{\columnseprule}{.5pt}

\begin{multicols}{2}

\noindent

\underline{\textbf{Exam}}\\

\noindent

1) Solve: $x^2-9 = 0$\\[2in]

\noindent

2) Solve: $(x+5)^2-10=0$\\[3in]

3) Solve: $x^2+2x-9=0$\\

\vfill

\columnbreak

\noindent

4) Complete the square of the following quadratic in order to put it in vertex form.

Also find the x and y intercepts of the function. Finally, graph the function and

label the vertex and the intercepts. Show your work!

\[

f(x)=x^2+4x-8

\]

\vfill

\pagebreak

\end{multicols}

6

Exam
1) Solve: x2 − 9 = 0

2) Solve: (x+ 5)2 − 10 = 0

3) Solve: x2 + 2x− 9 = 0

4) Complete the square of the following
quadratic in order to put it in vertex form. Also
find the x and y intercepts of the function. Fi-
nally, graph the function and label the vertex
and the intercepts. Show your work!

f(x) = x2 + 4x− 8

7

Notice that I did the numbering of each question on the exam manually in the example above. I
actually would not do it this way. I would use an the enumerate environment and let LATEX number
the problems for me automatically. That way I could rearrange the problems or remove problems
without worrying about changing the numbers (I just wanted to keep the example simple.) For more
on this topic, see the .tex file for this document and look right before this paragraph where I have
an alternate version of the above example that is commented out (so you can’t see it in the final
document). In that example I use automatic numbering.

There are more things that the multicol package does which I am not mentioning, and some
technical details that I am avoiding as well. You will need to play with it and also read the
documentation here: http://www.ctan.org/pkg/multicol

4 Adding pictures to your document

This is a really big topic and I will only be able to give you some of the basic ways to add pictures.
My goal here is to give you a few examples that work for the basic cases to get you started and then
point you to references that are more detailed and comprehensive.

4.1 Picture file types

Without going into too many details I want to briefly explain two important types of graphics
formats that are common in computer graphics: bitmaps and vector images. (The word “vector”
doesn’t mean drawing vector arrows in math, it is a type of image encoding.)

Bitmaps are pictures that use pixels to create the image. Common bitmap file extensions are:

←I used multicol

and an enumerated
list here. Also, I
altered the bullet
point to be a
triangle just for
fun. Check out the
.tex file for details.

. .bmp

. .gif

. .jpeg

. .jpg

. .png

. .pcx

. .tiff

. .psd (Adobe Photoshop)

The good thing about bitmaps is that they tend to have smaller file sizes (in comparison to vector
graphics) and are easier to edit quickly. There are many programs that create these types of files
(Microsoft paint, Corel Photo-Paint, Photoshop, Smooth Draw, SketchBook Pro, the list is endless).
Bitmaps are great when your picture is very high resolution like a photograph from a digital camera.
But if you have a lower resolution bitmap file or if you resize your bitmap file the quality might not
be that great. You have likely noticed that when you zoom in on a digital photograph, the quality
gets worse and worse. At the extreme, you can see the individual color pixels and you lose the detail.

Vector graphics behave differently and have different strengths and weaknesses. Vector graphic
files tend to have a larger file size than bitmaps and they can be harder to edit. But the cool thing
about vector images is that you can zoom in on them and they do not lose their sharpness. If you
are reading this text in Adobe Reader, try zooming in on one letter in this text. You will notice that
the edges of the letter stay sharp. This is because the text in this document is created with vector
graphics. This is also partly the reason why .pdf files print with such clean professional quality.
So if you want to add pictures to your LATEX document you should know that low quality bitmap
pictures might not look good next to your professional looking vector graphic text.

There are many obscure vector graphic file extensions that I have never run into but here are a
few that I have:

. .ai (Adobe Illustrator)

. .cdr (CorelDRAW)

. .svg

8

http://www.ctan.org/pkg/multicol

I use .svg files frequently because that is a an open standard that has is used by many free vector
drawing programs. I particularly like working with Inkscape.3

Now, it turns out that .pdf files are a hybrid and can contain both file types, which is a good
thing. (Another closely related file type is .eps or “Encapsulated Post Script” which is also a hybrid.)
This allows you to add either type of file to your LATEX document when you use pdflatex as your
compile option. But just be aware that low quality bitmap files may look really bad next to your
professional quality LATEX text. But if you are using a digital photo or high resolution scan, then a
bitmap file should look fine.

O.k., so now that you know a little bit about image types, you should know that there are two
general ways to add images to your document with LATEX. The first method, which I will discuss
briefly in the next section, is a complicated method that I won’t say much about but I want you to
know it exists. The second method is the easier and most commonly used method that I will explain
with a bunch of examples.

4.2 PGF/TikZ

The first method that I will mention for adding a picture (or diagram) to your document, is one
that, to be honest, I know very little about. I don’t know very much about this because I have never
taken the time to learn it (and up to this point I haven’t needed it). But I want to mention it just
so you know it exists and just in case you are into coding things from scratch yourself. But at the
end of the section I want to mention one cool package that I have used which is built upon the tools
mentioned in this section. (So consider this section optional reading; you can move right on to the
next section if you want to get to the every-day/practical/easy way to add pictures.)

The method I speak of here is to directly code your figures yourself using PGF/TikZ. These tools
are really powerful and can create some amazing results if you are really good at it. I have added
the tikz package and I have borrowed an example of some code that creates a pair of graph theory
diagrams.4 Here they are:

If you are interested in the code that generated those cool graphs, check out the .tex file for this
document. But again, I only have a vague idea about how this code works (so don’t ask me questions
about it ,). If you are the do-it-yourself type, and into computer programming, then tikz might
be your thing.

But one related package that I have used is tikz-cd. This package is an easy-to-use package that

3Inkscape is a full featured vector drawing program that is great for mathematical drawings. Admittedly, it takes
a bit of effort to learn the software but there are some nice resources online for learning the software. The best part
is that it is free as in “speech” and “beer.” Here is the website: http://www.inkscape.org/en/

4If you want to see some great TikZ examples including the one I borrowed here, see:
http://www.texample.net/tikz/examples/

If you would like to learn more see the two manuals here:
http://www.ctan.org/pkg/pgf

9

http://www.inkscape.org/en/
http://www.texample.net/tikz/examples/
http://www.ctan.org/pkg/pgf

is a very simplified version of tikz. It is streamlined to do one thing very well: it is great for making
commutative diagrams (hence the “cd” in the name). Now if you have never heard of a commutative
diagram don’t worry about it. But if you are into advanced mathematics these pop up occasionally
(in advanced algebra, topology, manifold theory etc.). They are essentially diagrams that map out
the relationships between functions. Here is an example that you might see in a smooth manifolds
course. Suppose you have the following four functions defined on the following sets:

q : U → Ũ

ϕ : U → Bn

ϕ̃ : Ũ → Rn

q̂ : Bn → Rn.

Furthermore, suppose these functions commute, meaning: ϕ̃ ◦ q = q̂ ◦ ϕ. Then it is very nice to
depict the relationship between these functions with a commutative diagram like this:

U Ũ

Bn Rn

q

ϕ ϕ̃

q̂

The arrows show the direction of the mappings and the overall picture is much clearer.
Here is the code that created that in case you are interested (think of the code as two lines in

an align environment but with connected arrows):

\begin{center}

\begin{tikzcd}

U \arrow{r}{q} \arrow{d}[swap]{\varphi}

& \widetilde{U} \arrow{d}{\widetilde{\varphi}} \\

\mathbb{B}^n \arrow{r}{\widehat{q}}

& \mathbb{R}^n

\end{tikzcd}

\end{center}

If you want information about this package see:

http://www.ctan.org/pkg/tikz-cd

4.3 Adding figures with graphicx

Now it is time to learn the more common, every-day method for adding figures to your document. I
will keep things simple here with some easy to copy examples. My intent is to explain the topic to
someone who is new to this. If you want to jump right to a more detailed presentation on adding
graphics, by all means go here:

http://en.wikibooks.org/wiki/LaTeX/Importing_Graphics

But my presentation here will hopefully be sufficient for most basic purposes.
We will need two new packages in this section which I have never mentioned before: graphicx

and caption. The graphicx package will help us handle adding the figures and the caption package
makes adding captions to your figures very easy.

When you add figures to your document with graphicx, you will be adding a preexisting picture
file to your document. This picture file needs to be saved in same working directory as the .tex file
that you are compiling.5

5Well... that is not the whole story but I am trying to keep it simple. You can actually add pictures from anywhere
on your computer using the \graphicspath command. See the section entitled “Graphics storage” here for more on
this:
http://en.wikibooks.org/wiki/LaTeX/Importing_Graphics

10

http://www.ctan.org/pkg/tikz-cd
http://en.wikibooks.org/wiki/LaTeX/Importing_Graphics
http://en.wikibooks.org/wiki/LaTeX/Importing_Graphics

When you are adding graphics to your LATEX document with graphicx, make sure you are
compiling your document with the pdfLATEX option. Your LATEX editor should have an option
controlling what format it will create after it compiles your document. In TEXworks, for example,
there is a pull down menu next to the compile button. I use TEXstudio and pdflatex is the default
choice. If you build your file with the pdflatex option, then you can add any of the following picture
file types to your document:

. .jpg

. .png

. .pdf

. .eps

An .eps file format is similar to a .pdf and stands for Encapsulated Postscript (you will likely
see references to this in LATEX documentation). The two file formats on the left are for bitmaps and
the two on the right are for vector graphics.6

4.3.1 Adding pictures in a fixed position

To add a picture to your document all you just need to have the graphicx package added in your
preamble and then you can use

\includegraphics[options]{filename}

In all of the examples in this section, this function will add a picture in precisely in the place where
you put this command. The filename is the name of the picture file that you want the graphicx

package to pull into your document. (In section 4.3.2 we will cover how to add pictures is such a
way that you will let LATEX decide the best place to fit the picture.) I will explain the options in a
minute; you are not required to specify any options. For the filename, I recommend you only type
the name of the picture file and do not add the extension (like .jpg or .pdf etc.). Just make sure that
all of your picture files that you are adding to your document are in your working directory and have
different file names. In my current directory I have a file called alice.jpg which is a bitmap file of
one of the original illustrations of Alice from Alice in Wonderland (illustration by John Tenniel in
1865). To add this picture to my document all I need is this:

\includegraphics{alice}

If I didn’t have a file in my current directory with the name “alice,” I would get an error. The result
of this code is so large that it will end up filling almost all of the next page.

6I mentioned earlier that I like to use Inkscape to create vector graphic drawings. By default, Inkscape saves in
the .svg format, but it has a option of saving as a .pdf. So when I do a drawing in Inkscape, I save it as a .pdf and
then use graphicx to add that file to my LATEX document.

11

12

Since I didn’t provide any optional arguments to the \includegraphics function, the picture was
blown up to fill the page. If you want to make the image smaller you can add the optional input
scale= inside square brackets. You then set the scale option equal to a scale multiplier. So let’s
make Alice shrink (don’t worry, Alice is quite accustomed to shrinking... she is about to drink the
vial of liquid you know):

\includegraphics[scale=0.25]{alice}

I will put the result of this code on it’s own line:

This shrunk Alice to a quarter of her original size. You might notice that the picture is indented,
that is because I put the picture on it’s own line after a \\ and LATEX treats this picture just like
adding a symbol or text.

You can also specify the options width and/or height in a similar way to scale. You just set
them equal to whatever length you want with whatever units you want. If you only specify either
height or width (but not both), then the proportions (aspect ratio) of the image will be preserved.
But if you specify both lengths the image will be stretched to exactly those dimensions. Here is an
example of all three. The third example has two optional arguments so you need a comma separating
the multiple arguments:

\noindent

\includegraphics[height=2in]{alice}

\includegraphics[width =2in]{alice}

\includegraphics[height=4in, width=3in]{alice}

13

The first one is 2 inches tall and the width adjusts proportionally. Similarly, the second picture is
2 inches wide and the height adjusts proportionally. But the third picture is forced to the specified
dimensions and thus is distorted. Also, the forced dimension caused it to overflow into the margin
(so you have to pay attention to your output). Also notice that in the last code example above, I
added the three figures in succession without any newline command. These three figures are added
on the same line just as if I typed three letters or math symbols in succession. Adding a picture is
just like adding any symbol; it just takes up more space. Since the pictures act just like text, I used
\noindent at the beginning of the line since I wanted the pictures to be flush with the left margin.
The bottom of the figures are on the same line. So if you have text in the same line as a picture it
will be in the same line like this:

\includegraphics[scale=0.1,angle=90]{alice}

\Leftarrow Alice rotated \Rightarrow

\includegraphics[angle = -30, scale=0.15]{alice}

⇐ Alice rotated ⇒

The example above also shows how you can rotate a picture as well. Positive angles rotate counter-
clockwise and the units are in degrees.

Now, all of the figures I have added in the examples above have been added inline, but you can
also add figures inside of an environment like center. In the next example I will also show you how
you can set the width to be a multiple of the width of the page so you don’t have to choose a specific
width.

\begin{center}

\includegraphics[width=.45\columnwidth]{alice}

\end{center}

This will make the picture centered and it will fill up 35% of the width of the main text column.
Instead of \columnwidth you can substitute \linewidth or \textwidth if you like. I like to use
\columnwidth because it works inside of a multicolumn environment to fit the thinner column. Here
is the result of the last code example:

14

If you want to crop a picture you can do that too. You need to add the argument clip=true

to the optional arguments and then trim= followed by four lengths representing how much you are
going to trim from the left, bottom, right and top in that order. The following code is an example
of a cropped picture inside the flushright environment. I will trim 2cm of the left 12cm off the
bottom, 3cm off the right and 0cm off the top. Then the result will be rescaled to fit 30% of the
column width (it is not exactly obvious how the trimming will look; you sort-of have to play around
with crop lengths and keep building the file and see what happens):

\begin{flushright}

\includegraphics[width=.3\columnwidth,trim=2cm 12cm 3cm 0cm,clip=true]{alice}

\end{flushright}

Here is the result:

You can also reflect a picture by putting it inside a \reflectbox{} which flips anything inside
of it right to left (let me emphasize that you can flip anything, including text, in a \reflectbox{}):

\begin{center}

\reflectbox{\includegraphics[width=3.5in]{alice}}

\end{center}

15

SohereisAliceaftershehasgonethroughthelookingglass:

4.3.2 Captions and floats

A “float” is a certain special type of object in LATEX. Floats are given the name “float” because they
will not necessarily be created exactly where you put them in your code. Instead, when you create a
float, you allow LATEX to decide where it will best be placed in the document so that it looks good.
The two main types of floats that are available in LATEX are figures and tables. To create a figure
or a table you need to use the figure or table environment. Up to this point I have not taught
you how to create a figure or a table, so I have never explicitly taught you how to make a floating
object yet. In this section I will explain how to make a floating figure with the figure environment
(I will explain tables in a later section). But first I want to emphasize that none of the pictures that
we added in the previous two sections were added in the figure environment so none of them were
floats. All of the pictures we added above were added to the document exactly where we declared
them, either right in-line, or inside of an environment like center or flushright (which are not
floating environments). But you can include a picture inside of a figure environment and then the
picture will become a float. The downside to adding pictures in the way we did above, is that you
might get a bunch of awkward empty space in some places. See for example, the bottom of page
14, where we added a picture of Alice that filled up 45% of the columnwidth. That picture was too
big to fit the rest of the page in that situation, so it forced the picture to the top of the following
page, which left a lot of unused blank space at the bottom of page 14. When you use the figure

environment, this will not happen. LATEX will move the figure around and adjust the text so that
there won’t be blank space. It’s time for an example.

The following is an example using the figure environment. I will show you the code here and
then I will explain it below:

\begin{figure}

\centering

\includegraphics[width=0.6\columnwidth]{teaparty}

\caption[A Mad Tea-Party]{From left to right we see Alice, the March Hare, the

Doormouse, and the Hatter.}

\label{fig:teaparty}

\end{figure}

Even though I added the code that included Mad Tea-Party picture before I typed this paragraph,
LATEX floated the picture to the top of the next page because it fits better there. So it isn’t leaving
any empty space on this page. You should look at the code in the .tex file to see what I mean. In the
example code above, I am adding the picture file teaparty.jpg inside of the figure environment in
the exact same way I explained in the sections above. The only thing that is new is that it inside of

16

Figure 1: From left to right we see Alice, the March Hare, the Doormouse, and the Hatter.

the figure environment. You can use the \centering function to center what is inside of the figure
environment. This is not quite the same as using the center environment. I recommend you only
use the \centering command inside of another environment like I am doing here (or any box that
creates a paragraph).7 When you create a figure you can easily add a caption with the caption

package which gives you the function \caption[list entry]{caption text}. The first, optional
argument to this function is in square brackets and it is the text that gets added to the list of figures
that you see on page 1. The second argument in curly braces is the caption that is added below
the actual figure. Make sure to put the \caption function right after the \includegraphics line.
When you add a caption, it creates a figure number which you can label and reference with the same
methods we learned in part 1 of the introduction to LATEX. Only figures that have numbers will be
added to the list of figures that you see on page 1. If you want a caption but you don’t want the
figure to be numbered, you can use the caption*{caption text} version of the function instead.

Because we labeled the Mad Tea-Party picture, we can reference it. If we type:

In figure \ref{fig:teaparty} we see John Tenniel’s Mad Tea-Party illustration.

This, of course, is the result:

In figure 1 we see John Tenniel’s Mad Tea-Party illustration.

By-the-way, I mentioned the list of figures at the beginning of the document. That is very easy
to create. All you have to do is type \listoffigures wherever you want it to go, and it will
automatically be formatted for you. It works just like \tableofcontents.

Now sometimes you might not like the place where LATEX places your float. If that ever happens
you have some options. One is to add one (or more) of the various optional placement commands
to the figure environment declaration. These go in square brackets like the one you can see here
(I have added the t! commands):

\begin{figure}[t!]

\centering

\includegraphics[width=0.3\columnwidth]{alice}

\caption{Alice}{Drink me!}

\label{fig:drinkme}

\end{figure}

7For more on the differences between the center environment and the centering command, see:
http://tex.stackexchange.com/questions/23650/when-should-we-use-begincenter-instead-of-centering

17

http://tex.stackexchange.com/questions/23650/when-should-we-use-begincenter-instead-of-centering

Figure 2: Drink me!

If you just put a t in the square brackets, then you are requesting that LATEX to try to put the float
at the top of the page. By adding the ! I am asking LATEX to break the rules and do anything it
can to try and force the picture to be at the top of the page (but even this doesn’t always work
though). If you want to learn more optional placement commands that are available, read this page
which has a lot of details:

http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions

There are some drawbacks to using floating figures. If you document has a lot of figures that
are very close together with very little text in between, then LATEX will have difficulty figuring out
where to put everything. So if I would have done section 4.3.1 with all floats instead of forcing the
pictures, it would not have worked. Also there might be times where you want a sequence of figures
one right after the other and you don’t want any text between them (like if you are showing still
frames of something that is changing over time). This will not work well with floating figures it is
best to use fixed position pictures like we had in section 4.3.1.

If you really want to force a picture in a specific spot and floats are not working for you, then
just force it by adding the picture with the methods we learned in section 4.3.1 above. And if you
want to add a caption to a non-floating figure you can do that too. You just have to add the figure
inside of some environment like center, and then use the function:
\captionof{float type}[list entry]{caption text}.
Even though this isn’t inside of a float, you need to specify the “float type” so that LATEX knows
how to number the caption. The float type should either be “figure” or “table” (unless you use some
other custom float type). Figure 3 below is a mathematical figure that uses this method of forcing
a fixed position but with a figure caption. This is a picture that I drew in Capeskin to explain the
concept of projecting a circle from a sphere to a plane. Here is the code:

18

http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions

\begin{center}

\includegraphics[width=.75\columnwidth]{RiemannSphereCircle}

\captionof{figure}[A circle on the Riemann sphere.]{The Riemann sphere

\mathbb{S}^2 is shown. The red rays, etc.}

\label{fig:circle}

\end{center}

Figure 3: The Riemann sphere S2 is shown. The red rays, which emanate from the north pole (0, 0, 1),
show the process of stereographic projection of points on the sphere to points in the complex plane
C. The intersection of a plane with the sphere is a circle on the sphere and the projection of this
intersection is a standard Euclidean circle in the plane.

So this shows you that your figure caption can have math and various script styles as well.
Because I created this picture in Inkscape, it is a vector graphics file. I saved the file as a .pdf
in Inkscape, which allowed me to easily add it to this document with the graphicx package. You
should view this document in Adobe reader and zoom in on figure 3. You will find that the lines stay
sharp. Then zoom in on the bitmap picture in figure 1 and you will see that the picture degrades
as you zoom in.

The last thing I will show you how to do in this section is to add subfigures inside of a figure.
But I need to warn you that the methods I use here might clash with other packages that you will
want to use. Everything I do here works just fine with the packages that I have chosen for this
document though (and most likely these methods will work for you in general). This method uses
the subfigure environment but some people recommend using the package called subfig instead
(which I am not using here).8 O.k., with all of the mild warnings aside here is how it works. You
need to add the subcaption package to your preamble (which I have done). This package provides
you with a new environment \begin{subfigure}[optional position]{mandatory width}. This
environment allows you to add subfigures inside of a figure. The “optional position” in brackets is
not necessary when you use it in the way that I will use it here , and I have never needed it anywhere.
But you might someday, so read the documentation on the subcaption. The “mandatory width” is

8There are conflicting opinions about what is correct here. I think if you use the subcaption package you will be
just fine. If this is important to you, then you can find out more about these issues at the following sites:
http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions

http://www.ctan.org/pkg/subcaption

http://www.ctan.org/pkg/subfig

http://tex.stackexchange.com/questions/144782/subfigure-and-subfig-packages-deprecated

19

http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions
http://www.ctan.org/pkg/subcaption
http://www.ctan.org/pkg/subfig
http://tex.stackexchange.com/questions/144782/subfigure-and-subfig-packages-deprecated

the width of the box that holds the subfigure. To see an example, the result of the following code
example can be seen in figure 4. The cool thing about subfigures is that you can give a caption to
the subfigures inside of the figure and also give a caption to the whole figure. The subfigure captions
will create a sub-lettering that will allow you to label and reference the subfigures as well. This
is extremely useful when you are comparing multiple figures side-by-side in a mathematical paper.
Here is the code for the example and I will explain some of the details below the code block:

\begin{figure}[b]

\centering

\begin{subfigure}{0.2\textwidth}

\includegraphics[width=\textwidth]{alice}

\caption{Alice}

\label{subfig:alice}

\end{subfigure}

\quad

\begin{subfigure}{0.35\textwidth}

\includegraphics[width=\textwidth]{teaparty}

\caption{Mad Tea-Party}

\label{subfig:teaparty}

\end{subfigure}

\quad

\begin{subfigure}{0.35\textwidth}

\includegraphics[width=\textwidth]{RiemannSphereCircle}

\caption{The Riemann Sphere}

\label{subfig:sphere}

\end{subfigure}

\caption[A figure with subfigures]{This example shows how to have subfigures

inside of a figure, create captions for all of them, label them, and later

reference them separately. Notice that the code for this caption also creates the

text that you see in the list of figures at the beginning of the document.}

\label{fig:threepics}

\end{figure}

Notice that I added the optional [b] to the figure environment declaration. This is a request to
LATEX to put the figure at the bottom of the page. Also note that each of the three pictures are
added inside of their own subfigure environment and all of these are nested inside of the figure

environment. So the entire block of pictures is one floating figure object, but the three pictures will
be side-by-side in the same line (once LATEX decides it’s final position). To put a bit of space between
the figures I put a \quad space between each picture. Also note that the width of the first subfigure

(a) Alice (b) Mad Tea-Party (c) The Riemann Sphere

Figure 4: This example shows how to have subfigures inside of a figure, create captions for all of
them, label them, and later reference them separately. Notice that the code for this caption also
creates the text that you see in the list of figures at the beginning of the document.

20

is 20% of the \textwidth and the second two take up 35%. I did this so that the proportions look
good next to each other since the first picture is taller than it is wide. But also note that I made the
width of the pictures equal to the \textwidth. This will ensure that the picture fills up the entire
width of the subfigure box. It is important where I placed the captions and labels as well. The
caption for the subfigures come right after the lines that include the picture file, and the caption for
the entire figure comes right after the last subfigure environment is ended. Then the labels for each
of the four captions come right after the corresponding caption. This order is important because
you need to make sure you are tying the label to the caption which is creating the numbering for
the label, and you want to make sure the caption is placed under the right picture. You will get
errors if you change the order. And sometimes I have found that if you have blank lines of code in
the environment it will cause problems so avoid having blank lines in your code.

Now that we have created this cool figure and labeled everything we can reference these labels
in a variety of ways using \ref, \eqref and the new option we have never seen before: \subref.
We get \subref from the subcaption package. Here is an example that combines all the different
ways you might want to format your references to the figure and subfigures:

Figure \ref{fig:threepics} shows a figure with subfigures. Figure

\ref{subfig:alice} and \eqref{subfig:teaparty} are bitmaps but figure

\ref{fig:threepics}(\subref{subfig:sphere}) is a vector drawing. It seems that

\subref{subfig:alice} and \subref{subfig:teaparty} in figure \eqref{fig:threepics}

go together but figure (\subref{subfig:sphere}) doesn’t fit in.

Here is the result of this code:

Figure 4 shows a figure with subfigures. Figure 4a and (4b) are bitmaps but figure 4(c) is a
vector drawing. It seems that a and b in figure (4) go together but figure (c) doesn’t fit in.

5 How to make a bibliography with BiBTEX

Another really awesome thing that LATEX can do for you is create a bibliography for you with a
minimal amount of work on your part. You won’t have to spend hours fiddling with commas,
periods, abbreviations, etc. You won’t even have to worry much about the differences between
MLA, APA, or Chicago styles (or the many different styles available). You will simply enter in all of
the information about your citation into a list of information, then tell LATEX what style you want,
and it will format it all for you. In fact you can do even better than that! If you use Google Books
or Google Scholar correctly then you can download all of this info in the correct format instantly,
copy paste it to your file and you are done!

So, in this section I will show you the basics on how to make a bibliography and how the code
needs to be organized, but I won’t go over all of the many possible types of citations you might
have. Once you know the coding part, I will direct you to online resources that have the details and
examples you need.

I should at least mention the various methods for making bibliographies that I am not going to
explain, just so you know they exist. Then you could go learn them on your own if you want to. It
turns out that there are a few different bibliography methods that each have their strengths and weak-
nesses. One option is to make the citations yourself using the environment called thebibliography

and the function \bibitem{}. This is a direct do-it-yourself approach that is fine if you just have
one or two citations. If you want to know more about this see this site:

http://www.math.uiuc.edu/~hildebr/tex/bibliographies.html

or read the section 1 of this wikibook entry:

http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management

Another option is to use the package called natbib which used to be popular and many people still
use it, but it is no longer supported. I have read that many journals require natbib if you want to

21

http://www.math.uiuc.edu/~hildebr/tex/bibliographies.html
http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management

get a paper published. If you wish to know more about this see section 2.4 here:
http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management

or read the documentation here:
http://www.ctan.org/pkg/natbib

The bibliography method that I will explain here uses BiBTEX, which you can think of as a sup-
plement to LATEX that came bundled with your distribution. You don’t need to add any packages to
get it to work. It runs on the side of LATEX. BiBTEX, is widely used and has become quite popular.
You should know that there is a newer updated replacement of BiBTEX, called BiBLATEX, which may
eventually completely replace BiBTEX. I don’t know much about it but here is the documentation:

http://www.ctan.org/pkg/biblatex

And there is even one more option that I had never heard of until recently called biber. You can find
a great discussion comparing the benefits and drawbacks of all four of these different bibliography
management systems here:

http://tex.stackexchange.com/questions/25701/bibtex-vs-biber-and-biblatex-vs-natbib

But since BiBTEX is one of the most widely used, I will focus in it only. Once you know how it
works you could learn the others easily.

When you use BiBTEX, all of your citation information is stored in a separate file that you need
to save with the extension .bib instead of .tex. Once you create this .bib file, you have to save it
in the same directory as your .tex file. You can give your .bib file any name you want. For this
demonstration lets call our .bib file myreferences.bib. If you want to compile this document, you
will have to download the .bib file that goes with this document.

A .bib file is fairly simple. You do not need a preamble of any kind and there are no environments
or anything like that. A .bib file is just a formatted data base of information. That is it. Here is
an example of an entry that I added to myreferences.bib. This is a typical book citation. This
happens to be a book that I have at my desk as I am typing this. Here is what I added to the
myreferences.bib file:

@book{LeeTopMan,

title={Introduction to Topological Manifolds},

author={John M. Lee},

series={Graduate Texts in Mathematics},

year={2010},

publisher={Springer}

}

The beginning of a citation always begins with the @ character followed by the type of citation. This
is a book so that is what I put. Then this is followed by a open curly brace, which is followed by the
citation key. I chose to make the key LeeTopMan. The key is just the code you will use to cite this
source in your text (I will show an example of how to do this below). The key has no effect on the
citation in your bibliography. The other entries that follow after the key are fairly self-explanatory.
You just need to follow the formatting. Make sure to use the equal signs as I did above and the
commas at the end are important. Also make sure to have the final closed curly brace at the very
end to finish the citation. If you only wanted this one citation in your bibliography, then what you
see above is all you need in your entire .bib file. That’s it! Just save it in your working directory
and you are done. Then, in your .tex file, wherever you want to put your bibliography (usually at
the end of your document, right before the end{document} line), you need the following two lines
of code:

\bibliographystyle{style}

\bibliography{filename}

22

http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management
http://www.ctan.org/pkg/natbib
http://www.ctan.org/pkg/biblatex
http://tex.stackexchange.com/questions/25701/bibtex-vs-biber-and-biblatex-vs-natbib

In the place of style, you need to put the bibliography style that you want to use, and in the
place of filename you put the name of your .bib file that you have saved in your working directory.
Here is what I have at the end of this document:

\bibliographystyle{plain}

\bibliography{myreferences}

The plain style is a common simple bibliography style that comes with LATEX, and, of course,
myreferences is the name of my .bib file (note that you do not put the file extension, just the
name of the file).

So now I can use the key that I made to cite this source anywhere in my document. So if I quote
something from the book, or just want to mention it, I can use the \cite{keylist} function. Here
is an example:

A great source for information about topological manifolds is \cite{LeeTopMan}.

This will be the result:
A great source for information about topological manifolds is [3].

Just to show you one more example, here is another entry that adds a journal article which you
will find in myreferences.bib:

@article{ghrist2008barcodes,

title={Barcodes: the persistent topology of data},

author={Ghrist, Robert},

journal={Bulletin of the American Mathematical Society},

volume={45},

number={1},

pages={61--75},

year={2008}

}

Now that we have two entries in our references list, I can show you how to cite two things at
once. Sometimes you want to refer the reader to two sources at the same time like this:

If you are really into topology, you should read \cite{LeeTopMan,ghrist2008barcodes}.

I referenced two citations by typing their both keys separated by a comma. This is the result:

If you are really into topology, you should read [3, 1].

I have had an example of a book and an article, but here is a list of other common entry types
that you can have in BiBTEX:

@article

@book

@booklet

@conference

@inbook

@incollection

@manual

@mastersthesis

@misc

@phdthesis

@proceedings

@techreport

@unpublished

Here is a great website that has examples of all of these and it also shows you what it will look like
if you choose different bibliography styles as well:
https://verbosus.com/bibtex-style-examples.html

In my examples above I only had a few fields like author, title, publisher, etc. Here is a list
of other fields that you can add to your citation:

23

https://verbosus.com/bibtex-style-examples.html

address

annote

author

booktitle

chapter

crossref

edition

editor

howpublished

institution

journal

key

month

note

number

organization

pages

publisher

school

series

title

type

volume

year

Here is a good website that explains what each one of these are and whether and when you should
use them:
http://www.fb10.uni-bremen.de/anglistik/langpro/bibliographies/jacobsen-bibtex.html

There are just a few more things that you need to know about BiBTEX that are essential. First,
you need to know that compiling your references takes a few steps, especially if you are using a more
basic LATEXeditor like TEXworks or TEXshop. The first time you compile your document that has
references in a .bib file, you need to compile the document with the following four steps:

1. Compile your document using pdfLATEX in the normal way you would any document. But
it will not completely compile, and it will seem like there were errors of some kind. This is
normal.

2. Next you have to run BiBTEX. This is usually an alternate compile option that is available
in your TEX editor. For example, it is one of the build options in the pull-down menu next
to the compile button in TEXworks. When this step is finished ignore any errors or warning
messages you might see.

3. Next, compile your code in pdfLATEX again and wait until it finishes, but again, it will show
errors and it won’t completely compile. But this is normal.

4. Compile your code in pdfLATEX one last time and if everything was coded correctly, you are
now done. You should be able to view your document.

This sequence is required because bib BiBTEX runs separately from LATEX and it has to cross
reference across different files. After you complete this sequence one time, you will be able to make
changes to your .tex file and compile in the normal way. You don’t have to repeat this sequence
every time you make changes. It is only needed during the first compilation. If you make changes
to your .bib file you might have to redo this sequence. If you use a more sophisticated LATEX
editor like TEXstudio, then all you have to do is compile once, in the usual way, and TEXstudio will
recognize that you are compiling a new .bib file and it does the above four-step sequence for you
automatically.

By default, the only references that will appear in your table of contents are ones that you
explicitly cite in your paper. If you want to have something in your bibliography that you don’t
explicitly cite you can use the \nocite{keylist} function. And, of course, in the place of “keylist”
you type the citation keys you want to appear separated by a comma. Any citation keys you put
in this function will be added to your bibliography. So any source in your .bib file that you do not
cite in your paper will not be included. As an example, I added \nocite{complexfunctions} to
my code right before the bibliography declaration and this added the book by Jones and Singerman
to my bibliography even though it isn’t cited explicitly. If you want all entries in your .bib file to
be in your bibliography, then use an asterisk in the place of your keylist: \nocite{*}. The asterisk
causes everything to be added. The nice thing about this is that you can collect a whole bunch of
citations as you do some research and just keep collecting them into on .bib file, and then you can
decide which ones you will include at the very end. So you could reuse that same .bib file in the
future as well (in case you write multiple papers in the same topic area).

Finally, the type of file that contains the code for the bibliography style is a .bst file. On my
PC with MikTEX, these files are saved in the following directory:

C:\Program Files (x86)\MiKTeX 2.9\bibtex\bst

24

http://www.fb10.uni-bremen.de/anglistik/langpro/bibliographies/jacobsen-bibtex.html

But this may be different on your operating system and TEX distribution. If you can find where the
.bst files are saved on your computer, then you can find what bibliography styles are available to
you. Here are the different styles that I have on my computer with the standard MikTEX installation:

• abbrv

• acm

• alpha

• ieeetr

• plain

• siam

• unsrt

• amsplain

• amsalpha

The last two are variations of the plain and alpha styles that have been created by the American
Mathematical Society. If you want to get more bibliography styles that you don’t have, you need
to get the .bst file for that style. And you would need to save the file where LATEX can find it. So
the easiest way is to save the .bst file you want to use in your current working directory. Here is a
website from Reed College that has an MLA and APA style if need those:

urlhttp://www.reed.edu/cis/help/latex/bibtexstyles.html

25

References

[1] Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathematical
Society, 45(1):61–75, 2008.

[2] Gareth A. Jones and David Singerman. Complex Functions: An algebraic and geometric view-
point. Cambridge University Press, 1987.

[3] John M. Lee. Introduction to Topological Manifolds. Graduate Texts in Mathematics. Springer,
2010.

26

	Before you begin reading...
	Indroduction
	Multiple columns and paper orientation
	Adding pictures to your document
	Picture file types
	PGF/TikZ
	Adding figures with graphicx
	Adding pictures in a fixed position
	Captions and floats

	How to make a bibliography with BiBTeX

