Operating Systems: Homework Project 1

Read the pertinent sections of the textbook (Operating Systems Design and Implementation, 3rd Edition. Tanenbaum, ISBN: 0131429388) and answer the following questions. Turn in your answers to questions 35, 36, and 37 using the extra attached copies of those worksheets. Skip problems 18 & 20.
1) What are the two main functions of an operating system as discussed in class ? [1 pt]

2) Think about how you might use your computer in the future. Discuss the features and capabilities of an operating system that you envision as being useful in the year 2020. (The answer to this question will most likely be unique for each student) [3 pts]

3) What is multiprogramming ? What additional responsibilities were placed upon the operating system when multiprogramming was introduced ? [1 pt]

4) Chapter 1, Problem 4 in Tanenbaum. [1 pt]

5) Chapter 1, Problem 5 in Tanenbaum. [1 pt]

6) Chapter 1, Problem 6 in Tanenbaum. [1 pt]

7) Chapter 1, Problem 8 in Tanenbaum. [1 pt]

8) Chapter 4, Problem 5 in Tanenbaum. [1 pt]

9) Chapter 4, Problem 6 in Tanenbaum. [4 pts]

10) Chapter 4, Problem 8 in Tanenbaum. [1 pt]

11) Chapter 4, Problem 9 in Tanenbaum. [4 pts]

12) Chapter 4, Problem 19 in Tanenbaum. [2 pts]

13) Chapter 4, Problem 28 in Tanenbaum. [4 pts]

14) Chapter 4, Problem 30 in Tanenbaum. [1 pt]

15) Chapter 4, Problem 31 in Tanenbaum. [1 pt]

16) Chapter 5, Problem 5 in Tanenbaum. [1 pt]

17) Chapter 5, Problem 6 in Tanenbaum. [2 pts]

18) Chapter 5, Problem 16 in Tanenbaum. [1 pt]
19) Chapter 5, Problem 27 in Tanenbaum. [2 pts]

20) Chapter 5, Problem 24 in Tanenbaum. [2 pts]
21) Suppose that nonvolatile RAM becomes available; that is, it is capable of retaining its contents after the computer is turned off. Assume that this new RAM memory has no price or performance disadvantage over conventional volatile RAM. What impact would this new technology have on the boot-up process for a computer ? [2 pts]
22) Explain figure 5-21 in Tanenbaum and compare the expected disk performance of figure (a) vs. figure (b). [2 pts]

23) What is thrashing and why does it occur. How would the system detect it, and once detected, what can the system do to eliminate this problem ? [1 pt]

24) Give an example of an application in which data in a file should be accessed (a) sequentially, and (b) randomly. [1 pt]

25) Some systems implement file sharing by maintaining a single copy of a file; other systems maintain several copies, one for each user sharing the file. Discuss the relative merits of each approach. [1 pt]

26) Why is rotational latency usually not factored into account in disk scheduling algorithms ? [1 pt]

27) An old system without a cache has a main memory RAM access time of 70ns. If a cache with access time of 10ns is added, what is the new effective average memory speed (Ta) assuming a hit ratio of .95 ? Also calculate the speedup (Sc) obtained. [1 pt]

28) Why is set-associative mapping preferable to both fully-associative and direct mapping ? [1 pt]

29) What is locality of reference ? What are some intuitive justifications as to why programs exhibit locality of reference as they execute ? [1 pt]

30) What is Belady's Anomaly ? [1 pt]

31) There are two ramifications of virtual memory: addressability and relocatability. Describe each. Assume that a computer has a bad memory chip. Why is it important that a computer repair person be cognizant of the operation of virtual memory in his attempt to detect and correct the fault ? [1 pt]

32) For a multiprogrammed system where several processes can be running concurrently, would one expect a fixed or dynamic partitioning of virtual memory to be more effective ? Why ? Describe the central idea (in words) behind the two dynamic partitioning algorithms discussed in class. [1 pt]

33) Assume a state in which memory consists of the available hole sizes as shown for each numbered block. Which block number is chosen for successive segment requests of: a) 12K, b) 10K, c) 9K, and d) 9K if a first fit algorithm (which scans in a top-down manner) is used ? Repeat the question (assuming a re-initialized state) for best fit. [2 pts]

	Block 1
	20 K

	Block 2
	4 K

	Block 3
	10 K

	Block 4
	9 K

	Block 5
	7 K

	Block 6
	18 K

	Block 7
	12 K

	Block 8
	15 K

34) Assume the time needed by the disk controller to read a block of data from the disk equals the amount of time it needs to transfer the data to RAM. Also, assume the read head is at the 12 o'clock position in the figure at the bottom of page 34 of the course reader. How many rotations of the disk (accurate to 1/8 of a revolution) are necessary to read all blocks from 0 to 7 in order if: [3 pts]

a) No interleaving is used

b) Single interleaving is used

c) Double interleaving is used.
35) Assume that a RAM memory chip has a 0.4 ms access time and 0.8 ms cycle time. It takes the CPU 0.2 ms to prepare a memory request and 0.2 ms to process the result. The CPU can either prepare a memory request or process a result in parallel with the memory; however, it cannot prepare a request and process a result concurrently. If an idle memory chip is available, the CPU can issue a request for the next operand (e.g. B) to it before actually receiving and processing a previously requested one (e.g. A) from another memory chip, but it must handle a result as soon as it becomes available from memory.

A worksheet is provided for each of the various degrees of interleaving showing time from 0 ms to 4 ms in 0.2 ms increments. Assume a string of four operands (A - D). Show the time at which each operand is prepared, memory accessed (including wait times), and handled. [3 pts total]

a) Non-Interleaved [1 pt]

b) Two-Way Interleaved [1 pt]

c) Four-Way Interleaved [1 pt]

36) The figure below shows eight blocks of main memory occupied with program segments A thru H and two ways of organizing a four block cache memory. Show where the four program segments A, D, F, and G would reside in both the direct and set associative mapping schemes for the cache. Also show the binary tag that needs to be stored with the segment. (There may be more than one correct answer.) [2 pts]

Main Memory

Direct Mapped

Set Associative Mapped (2-way)

	000
	Prog A
	
	00
	
	
	Set 0
	
	

	001
	Prog B
	
	01
	
	
	Set 1
	
	

	010
	Prog C
	
	10
	
	
	
	

	011
	Prog D
	
	11
	
	
	
	

	100
	Prog E
	
	
	
	
	
	

	101
	Prog F
	
	
	
	
	
	

	110
	Prog G
	
	
	
	
	
	

	111
	Prog H
	
	
	
	
	
	

37) Assume the CPU issues the page reference string shown below. Emulate the operation of the virtual memory management unit by showing the contents of physical memory (represented conceptually as a "stack" on the worksheet) during the page reference string using the various replacement schemes identified. On page faults, draw boxes around the new contents to contrast them against hits. For the variable partition algorithms, the worksheet shown may be larger than that actually needed. [6 pts total]

a) Optimal [1 pt]

	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b) First In First Out (FIFO) [1 pt]
	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

c) Least Recently Used (LRU) [1 pt]
	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

d) Working Set [1 pt]

Window size is T = 4

	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Number of faults: ________

Space-Time Product:

e) Page Fault Frequency (PFF) [2 pts]

Upper Threshold: Increase memory size by one frame if current page reference is a fault and last reference produced a fault (two faults in a row).

Lower Threshold: Decrease memory size by one frame if current page reference is a hit and last 2 references were also hits (three hits in a row). Use LRU replacement.

	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Number of faults: ________

Space-Time Product:

35) Assume that a RAM memory chip has a 0.4 ms access time and 0.8 ms cycle time. It takes the CPU 0.2 ms to prepare a memory request and 0.2 ms to process the result. The CPU can either prepare a memory request or process a result in parallel with the memory; however, it cannot prepare a request and process a result concurrently. If an idle memory chip is available, the CPU can issue a request for the next operand (e.g. B) to it before actually receiving and processing a previously requested one (e.g. A) from another memory chip, but it must handle a result as soon as it becomes available from memory.

A worksheet is provided for each of the various degrees of interleaving showing time from 0 ms to 4 ms in 0.2 ms increments. Assume a string of four operands (A - D). Show the time at which each operand is prepared, memory accessed (including wait times), and handled. [3 pts total]

a) Non-Interleaved [1 pt]

b) Two-Way Interleaved [1 pt]

c) Four-Way Interleaved [1 pt]

36) The figure below shows eight blocks of main memory occupied with program segments A thru H and two ways of organizing a four block cache memory. Show where the four program segments A, D, F, and G would reside in both the direct and set associative mapping schemes for the cache. Also show the binary tag that needs to be stored with the segment. (There may be more than one correct answer.) [2 pts]

Main Memory

Direct Mapped

Set Associative Mapped (2-way)

	000
	Prog A
	
	00
	
	
	Set 0
	
	

	001
	Prog B
	
	01
	
	
	Set 1
	
	

	010
	Prog C
	
	10
	
	
	
	

	011
	Prog D
	
	11
	
	
	
	

	100
	Prog E
	
	
	
	
	
	

	101
	Prog F
	
	
	
	
	
	

	110
	Prog G
	
	
	
	
	
	

	111
	Prog H
	
	
	
	
	
	

37) Assume the CPU issues the page reference string shown below. Emulate the operation of the virtual memory management unit by showing the contents of physical memory (represented conceptually as a "stack" on the worksheet) during the page reference string using the various replacement schemes identified. On page faults, draw boxes around the new contents to contrast them against hits. For the variable partition algorithms, the worksheet shown may be larger than that actually needed. [6 pts total]

a) Optimal [1 pt]

	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b) First In First Out (FIFO) [1 pt]
	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

c) Least Recently Used (LRU) [1 pt]
	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

d) Working Set [1 pt]

Window size is T = 4

	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Number of faults: ________

Space-Time Product:

e) Page Fault Frequency (PFF) [2 pts]

Upper Threshold: Increase memory size by one frame if current page reference is a fault and last reference produced a fault (two faults in a row).

Lower Threshold: Decrease memory size by one frame if current page reference is a hit and last 2 references were also hits (three hits in a row). Use LRU replacement.

	1
	
	2
	
	3
	
	4
	
	4
	
	1
	
	2
	
	1
	
	4
	
	5
	
	4
	
	5
	
	1
	
	4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Number of faults: ________

Space-Time Product:

Programming Lab Background: Processes vs. Programs and Printing Anomalies

- Creating a new process

- Fork makes an exact copy of the process

 EMBED Word.Picture.8

- The two processes resume execution immediately after Fork.

- Both processes will execute the identical source code after Fork.

- To separate processes, branch as a function of Fork return value.

- Printing anomalies can arise with buffered I/O and Forking of processes.

- Printf "Before Fork" may be buffered instead of actually printed.

- When Fork is executed, child inherits the parent's buffered I/O.

- A copy of "Before Fork" exists in both the parent and child's buffer.

- Printing anomalies can also arise due to random process scheduling.

- If parent process completes before child, child process is aborted.

Lab Background:

This lab really concerns process creation via the FORK command. However, FORKing exposes some intricate details of the operating system's processor management and I/O management routines that need to be explained first. This preliminary section of the lab exercise demonstrates some of the printing anomalies that may occur during this project due to process race conditions (scheduling) and buffered I/O. Therefore, the first few "problems" of this lab do not require that you write any code (in fact, the source code will be given to you), but instead, to simply observe the output generated on your system. This preparation will help you better understand the results that you will get from the programs you actually write (problems #42 and #43), and why and how the OS does (and prints) what it does.

The goal of the buffering provided by the standard 'C' I/O library routines is to use the minimum number of actual device-level read and write calls. Also, the OS and I/O routines try to do this buffering automatically for each I/O stream, obviating the need for the application to worry about it. Unfortunately, buffering is the single most confusing aspect of the standard I/O library, especially when its actions are combined with a scenario where processes are being forked (as is being done in this homework assignment).

'C' processes execute on top of the kernel (which is itself, a process). Output generated by a 'C' process with a printf statement is buffered by the kernel before being routed to the hardware; that is, output generated by the 'C' process is stored by the kernel to a temporary buffer until a sufficient amount of it has been accumulated to warrant disrupting process execution with an I/O fault. The system does this because it is more efficient for overall system performance to buffer I/O to minimize the number of I/O operations actually performed by the relatively slow physical devices (usually the disk). Thus, even though a process may have been coded by the programmer to print 5 bytes each time it goes through a 10-iteration loop, the system may in actuality perform just one write of 50 bytes after all 10 iterations through the loop have been completed. Typically, several printf statements can be executed by the process (and buffered by the kernel) before an actual write operation needs to be performed.

The system generally performs buffering when it "knows" that the output is a disk (a file) rather than the terminal, since a person never really has the opportunity to see the output of the disk (file) until the process generating the output is complete and the file closed. Then, and only then will the user typically open the file again for reading. Thus, the buffering is transparent to the user. For example, such a scenario occurs whenever the output of a process is piped to a file via the UNIX shell command " > ". Only after the program is complete will the user examine the output target file of the ">" shell command. The file appears the same to the user whether it is written in real-time or buffered by the system.

When the output is directed to a terminal (screen) however, the system "knows" that there is a person sitting in front of the device expecting output to occur in real time. It then must actually perform the I/O operations as they occur. This way, if a user prints 5 bytes each time a program goes through a loop, he actually sees 5 bytes print out on the screen each time the program executes through the loop, rather than seeing 50 bytes print out all at once after all 10 iterations through the loop have been completed. This may be important to the user because he may be doing the incremental printing as a way of tracing the execution of the program. In fact, we will be doing this as part of the lab assignment.

The differing requirements of output directed to a terminal vs. that directed to a file lead to the following buffering rules: A new line feed will generally force the system to do the output if the output device is the terminal; however, it typically will not force an I/O to be performed if the output device is a disk (file). Error messages generated by the system need to be reported to the user as soon as possible and as close to the offending executable statement as possible. Therefore, error messages cannot be buffered.

Thus, there are three types of buffering provided by the system:

1) Fully buffered. In this case, actual I/O only takes place when the I/O buffer is filled. Files that reside on disk are normally fully buffered by the standard I/O library. The term "flush" describes the writing of a standard I/O buffer. The buffer can be flushed automatically by the kernel, or manually by the programmer via a call to the function fflush. Printf behaves this way when directed to a disk.
2) Line buffered. In this case, the standard I/O library performs I/O when a newline character is encountered on input or output. This allows a program to output a single character at a time, but the actual I/O will take place only when the program finishes writing each line. Line buffering is typically used on a stream when it is directed to a terminal. Printf behaves this way when directed to a terminal.

3) Unbuffered. Here, output generated by a program is written to the target output device in real-time. The standard error stream, for example, is normally unbuffered. This is done so that any error messages are displayed as quickly as possible, regardless of whether they contain a newline or not. Write generally behaves this way -- or at least for this project we can think of it as being this way.

Based on material in this course which will (eventually) be presented on the scheduler (during the section on processor management), it becomes apparent that processes are selected from the ready queue as dictated by some scheduling algorithm. Processes are executed in the order determined, not by the user, but by the scheduler. If a single program spawns several concurrently active processes, the exact execution order of each process can be different (depending on system load, or even by sheer chance) for the program on different invocations of the exact same program code.

Normally, process scheduling is transparent to the end user. The rules of output buffering are also designed to maximize system performance while being transparent to the end user. However, when the randomness of process scheduling is combined with the "delayed" output effects of buffering, idiosyncrasies may arise and become apparent to the end user in the form of missing, out-of-order, or extraneous output. These anomalous results are caused by some interesting race conditions that occur when multiple processes, each of which performs some printing (and each of whose output is being buffered), are actively running concurrently. For example, when a parent process terminates, all of its children are terminated too. Typically, buffers get emptied upon process termination; however, if several parent/child processes are running, it is possible that the parent process will terminate and orphan the child process before its output can be flushed. The end user, in effect, experiences a situation where the child's output is lost. Other execution scenarios can actually lead to output being replicated.

Fortunately, there are ways for a programmer to counter the effects of buffered I/O and the seemingly randomness of scheduling. To obtain a more deterministic and consistent execution order for processes, the wait system call can be used to force a process to "pass up it's turn" on the CPU until another process has a chance to catch up. Also, output can be forced to occur, i.e., flushed by the user via the fflush(stdout) statement. In these exercises, the wait statement will be used to force parents to wait (if necessary) for the child process to complete. The utility of the fflush system call is also demonstrated.

38) Execute the following 'C' program, first interactively, then by redirecting output to a file at the UNIX shell level with a ">". Explain the difference between the output observed on the terminal and that contained in the target piped file. [2 pts]
int main (void)

{
printf("Line 1 ..\n");

write(1,"Line 2 ",7);
}
Be sure there are 7 characters in "Line 2 "
39) Execute the following 'C' program, first interactively, then by redirecting output to a file at the UNIX shell level with a ">". Explain what has happened with the addition of the fflush system call. [2pts]

#include <stdio.h>

int main (void)

{
printf("Line 1 ..\n");

fflush(stdout);

write(1,"Line 2 ",7);
}
Be sure there are 7 characters in "Line 2 "
40) Run the following 'C' program interactively. [Note: On some operating systems, a different order for the printouts from parent and child processes may result on different runs.]
main ()

{
int pid;

int i;

for (i=0; i<3; i++){

if ((pid=fork()) <0)
{printf("Sorry...cannot fork\n");
}

else if (pid ==0)

{printf("child %d\n", i);

}

else

{printf ("parent %d\n", i);
}

}

exit(0); }

To help you understand the intended behavior of this program, note the following explanation of the fork system call along with the important points regarding this particular program's process execution tree. The system call fork() is called without any arguments and returns an integer process identification number (pid). It causes the OS kernel to create a new process which is an exact duplicate of the calling process. The new process is termed to be a child of the parent process. The new child process is an exact clone of the parent. It has the same data and variable values as the parent at the time fork was executed. It even shares the same file descriptors as the parent. The child process does not start its execution from the first instruction in the source code, but continues with the next statement after the call to fork. That is, after the call, the parent process and it's newly created offspring execute concurrently with both processes resuming execution at the statement immediately after the call to fork.

This leads to an intriguing predicament because if the parent and child are perfect clones, how does the child know it is a child and the parent know it is the parent ? The only way to tell is to have each process immediately examine the return value of the fork call. In the parent, a successful fork returns the process identifier (PID) of the new child. The pid is set to a unique, non-zero, positive integer identifying the newly created child process for the parent. In the child, fork returns a nominal value of 0. The value of the pid enables a programmer to distinguish a child from it's parent and to specify different actions for the two processes (usually via an IF or CASE statement as shown in Tanenbaum figures 1.10 and 1.13). A process can obtain its own pid and that of its parent using the getpid() and getppid() system calls respectively. The typical method of spawning processes is as follows. If the fork is successful, each process must now determine its status (parent or child) by checking the value returned by fork. Then, a branch in execution paths occurs as a function of the process type (parent or child).

The behavior of the fork may seem a little counterintuitive if you are being introduced to it for the first time. The key to understanding it is to think in terms of processes instead of programs. Normally, when you produce a program, you think of each line of the source code text as being executed in a predictable sequence. Typically, when you run the program, you run a single process on your source code. However, when you think of processes, you have to think of each instance of your program behaving as an independent entity. Each process may share the same program source code, but after forking, each process may pursue a completely different route through the program. Also bear in mind that, on a uniprocessor implementing multiprogramming, there is only one CPU. Therefore, only one process is really executing at any point in time, even though from a programmer perspective, they are running "concurrently". Depending on the scheduling algorithm employed by the system, the parent and child processes can make progress at different rates of execution.

In particular, for program 40, note the following:

* A process P in an iteration will continue and try to iterate with a value of i incremented by 1. P will have generated a child C that will also try to iterate with a value of i incremented by 1. We can represent the various processes with the following tree:
 P(0)

 |

 +-------------------------------+

 P(1) C(0)

 | |

 +---------------+ +------------------+

 P(2) C(1) P(1) C(1)

 | | | |

 *------+ +-------+ +-------+ +--------+

 C(2) P(2) C(2) P(2) C(2) P(2) C(2)

* In this tree, each node is represented with the value of i at the time this process prints a message.

* Also, in this tree, when we go from a node N to its left successor, we go from one iteration to the next iteration of the process represented at N.
* When we go from a node N to its right successor, we are introducing the child of the process represented at N.
In what order are the 'nodes' of the process tree traversed when the program is run on your system ? That is, left or right most first, depth or breadth first ? Label the ordering (1 to 14) on the tree above. [2 pts]

40b) Run the program while redirecting output to a file via ">". First, note that the standard output is line buffered if it's connected to a terminal device, otherwise it's fully buffered. When we run the program interactively, we get only a single copy of the printf lines because the standard output buffer is flushed by the newline. But when we redirect standard output to a file, we get multiple copies of some of the printfs. What has happened in this case of full buffering is that a printf before a fork is called once, but the line "printed" remains in the buffer when fork is called. This buffer is then replicated and inherited by the child process. Both the parent and child now have a standard I/O buffer with the "printed" line in it. Any additional printfs performed by the parent or child simply appends additional printed data to the existing buffer. When each process terminates, its copy of the buffer is finally flushed.

41) Inserting the minor changes to the program above to get the following, execute the following 'C' program interactively, as well as while redirecting to a file. Explain what has happened. [Note: on some operating systems, the order of the printout will vary with different executions of the same program] [2pts]

#include <stdio.h>

main () {

int pid;

int i;

for (i=0; i<3; i++){

if ((pid=fork()) <0)
{printf("Sorry...cannot fork\n");
}

else if (pid ==0)

{printf("child %d\n", i);

fflush(stdout);

}

else

{wait();

printf ("parent %d\n", i);

fflush(stdout);

}

}

exit(0);}

Now, that the background is done, here's the real lab where you get to write the code:

The operating system contains numerous interface calls that enable user programs to communicate with it. For example, figure 1.9 of Tanenbaum lists several system calls possible to the OS. In this exercise, the focus is on OS support of user process management tasks as discussed briefly in section 1.4 of Tanenbaum. Specifically, in a multiprogrammed system where several processes can be active concurrently, functions are needed to enable user processes to:

1) create (fork) other processes

2) coordinate (via wait and sleep) their execution sequences

3) communicate with each other via signals and pipes.

For the following programs: Hand in your source code listing and a printout showing that the program performs correctly for various test conditions. Mark and label your printout using a pen/pencil/highlighter to identify the output of your program for given inputs. Your documentation of how well your program performs under various test cases will be part of the evaluation criteria. Although some information is provided below regarding the various system calls, you may find it useful to consult other reference documentation such as that contained on-line (via MAN pages) or in other books. Note that you may also need to make use of fflush and wait as demonstrated in the lab background examples to make redirected output appear correctly.

42) Write a program that will create a child process. Have the parent print out its pid and that of it’s child. Have the child print it’s pid and that of it’s parent. Recall that a process can obtain its own pid and that of its parent using the getpid() and getppid() system calls respectively. Have the processes print informational messages during various phases of their execution as a means of tracing them. A typical printout might contain the following output (not necessarily in this order). [10 pts]

Immediately before the fork. Only one process at this point.

Immediately after the fork. This statement should print twice.

Immediately after the fork. This statement should print twice.

I'm the child. My pid is XXXX. My parent's pid is XXXX.

I'm the parent. My pid is XXXX. My child's pid is XXXX.

43) Write a program that will create a process tree structure as shown below. Again, have the processes print informational messages to verify that their parent-child relationship is that as shown. So processes B and C should both report the same parent pid (that of A). Also, processes E and F should both report the same parent pid (that of C) and D should report its parent as being B. Draw this figure next to your output. Label each node in the figure with the numeric PID of the processes that your program creates. [20 pts]

_1169531984.unknown

_1169532600.unknown

_1169532601.unknown

_1169532687.unknown

_1169532598.unknown

_1169532599.unknown

_1169531985.unknown

_1169531983.unknown

