Operating Systems Project 2

1) For the following problems, apply the stated processor scheduling algorithm for the five given jobs. Fill in the time line graph to show when each process is receiving CPU service during the 15 time periods. Also record the time after which each job is completed in the table. Although you are not required to do so, you may find it helpful to fill in the Time to Completion columns whenever appropriate. Higher priority numbers override lower priority numbers. In the event of any ties, state your tie breaking criteria. Assume the jobs never perform I/O. Turn in your answers for problem #1 on these sheets.

FIFO [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Nonpreemptive HPF [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Job

Priority
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	5
	2
	

	
	B
	4
	4
	4
	

	
	C
	1
	2
	1
	

	
	D
	0
	1
	3
	

	
	E
	6
	3
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Preemptive HPF [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Job

Priority
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	5
	2
	

	
	B
	4
	4
	4
	

	
	C
	1
	2
	1
	

	
	D
	0
	1
	3
	

	
	E
	6
	3
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Shortest Job First (SJF) [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Shortest Remaining Time (SRT) [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Round Robin (q=1) [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2) Assume a multi-level feedback queue arrangement which uses q = 4 seconds for the first queue and increasing powers of 2 for the time limits of the successive queues (i.e. second queue has q = 8 seconds, etc.). How many seconds would a CPU-intensive process needing a total of 200 seconds of CPU processing time spend in the 6th level queue ? [2 pts]

3) Given the following track (or cylinder) requests for a disk drive, list the order in which the tracks are serviced by the read head mechanism and the total distance traveled by the head mechanism after servicing all requests.

20

36

18

32

24

16

12

26

30

Assume the read head starts at track location 20 and parks at the last track serviced. Perform the problem for the various disk head scheduling algorithms: a) FCFS, b) SSF, and c) SCAN. For the SCAN algorithm, assume the initial direction is "up" (i.e. towards higher numbered tracks). [2 pts]

4) Let T represent the amount of time that the average process runs before it blocks itself by performing I/O. Assume the context switch time required as overhead to swap a blocked process out and to put a new ready process in its place is defined by S. For round robin scheduling with time quantum q, give a formula for the CPU efficiency for each of the following cases. [6 pts]

a)
q > T

b)
S < q < T

c)
q nearly 0.

5) Five batch jobs A through E arrive at virtually the same time. All jobs are CPU bound (i.e., assume they do not perform any I/O) and they have estimated running times of 10, 6, 2, 4, and 8 minutes respectively. Assume a round robin multiprogrammed system where each job gets its fair share of the CPU (i.e., the quantum is so small as to be negligible in relative terms when compared to minutes). What is the average process turnaround time ? [4 pts]

6a) In regards to figure 3.8 in Tanenbaum [[3.10 in edition 3]], if process C requested S instead of R at step (o), would deadlock occur ? Explain why or why not. [1 pt]

b) Now suppose C requested both R and S at step (o). Would this lead to a deadlock ? Explain. [1 pt]

7a) In regards to figure 3.11b in Tanenbaum [[3.13b in edition 3]], if Suzanne asks for one more unit, should her request be granted ? Explain why or why not. [[A = Andy, B = Barbara, C = Marvin, D = Suzanne]] [2 pts]

b) Suppose the request for one more unit came from Marvin instead of Suzanne. Should his request be denied or granted ? Explain. [2 pts]

8) In regards to figure 3.13 in Tanenbaum [[3.15 in edition 3]], if process A requests the last tape drive, should this allocation be granted or denied ? Explain why or why not. [4 pts]

9) A computer has 6 tape drives and N processes competing for them. Each process may need up to two drives. For which values of N is the system deadlock free ? Explain. [5 pts]

10a) In regards to figure 3.12 in Tanenbaum [[3.14 in edition 3]], what are the horizontal and vertical bounds (in terms of process A and B instructions) of the "all-encompassing danger region" (i.e., the region, which if entered, could eventually lead to deadlock) that should be avoided by any trajectories ? [1 pt]

b) In figure 3.12 [[3.14 in edition 3]], is there any way for the execution trajectory to ever reach the intersection of I3 and I7 ? Explain why or why not. [1 pt]

c) Suppose process A requests the printer at I2 instead of I1 and then releases it at I3. If the instruction execution trajectory is currently at point t as shown in figure 3.12 [[3.14 in edition 3]], give two completion paths which will allow point u to eventually be reached. [1 pt]

d) Suppose you saw an execution trajectory consisting of diagonal lines. On what type of hardware platform might such a trajectory be possible ? [1 pt]

Operating Systems Project 2

1) For the following problems, apply the stated processor scheduling algorithm for the five given jobs. Fill in the time line graph to show when each process is receiving CPU service during the 15 time periods. Also record the time after which each job is completed in the table. Although you are not required to do so, you may find it helpful to fill in the Time to Completion columns whenever appropriate. Higher priority numbers override lower priority numbers. In the event of any ties, state your tie breaking criteria. Assume the jobs never perform I/O. Turn in your answers for problem #1 on these sheets.

FIFO [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Nonpreemptive HPF [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Job

Priority
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	5
	2
	

	
	B
	4
	4
	4
	

	
	C
	1
	2
	1
	

	
	D
	0
	1
	3
	

	
	E
	6
	3
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Preemptive HPF [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Job

Priority
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	5
	2
	

	
	B
	4
	4
	4
	

	
	C
	1
	2
	1
	

	
	D
	0
	1
	3
	

	
	E
	6
	3
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Shortest Job First (SJF) [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Shortest Remaining Time (SRT) [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Round Robin (q=1) [2 pts]

	
	Job

Name
	Job Arrives

After Time
	Tr = Time to Completion
	Completed

After Time:

	
	A
	3
	2
	

	
	B
	4
	4
	

	
	C
	1
	1
	

	
	D
	0
	3
	

	
	E
	6
	5
	

	
	Tr
	1
	Tr
	2
	Tr
	3
	Tr
	4
	Tr
	5
	Tr
	6
	Tr
	7
	Tr
	8
	Tr
	9
	Tr
	10
	Tr
	11
	Tr
	12
	Tr
	13
	Tr
	14
	Tr
	15

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

As illustrated in the last project, the operating system contains numerous interface calls that enable user programs to communicate with it. For example, the OS conveniently provides a system call to facilitate reading i-node information regarding a file through the stat structure as shown in figure 1.12 of Tanenbaum(3rd edition). There are also process creation routines such as fork. In this exercise, the focus is on OS support of user process management tasks as discussed briefly in section 1.4 of Tanenbaum. Specifically, in a multiprogrammed system where several processes can be active concurrently, functions are needed to enable user processes to: 1) coordinate (via wait and sleep) their execution sequences, and 2) communicate with (signal) each other. They may also need to be aware of time, and react to time-based events.

For the following programs: Hand in your source code listing and a printout showing that the program performs correctly for various test conditions. Mark and label your printout using a pen/pencil/highlighter to identify the output of your program for given inputs. Your documentation of how well your program performs under various test cases will be part of the evaluation criteria. Note that part of this assignment involves seeking out information on your own from various sources. Although brief information is provided below regarding the various system calls used for the programs you will write, you will probably need to consult other reference documentation such as that contained on-line, in Tanenbaum, or in other Unix System Programming books such as Haviland. Note also that the exact syntax of the system calls may vary depending upon the specific operating system you are using.
11) One way for a parent process to attack a very large problem might be to split it into several smaller pieces, create several new child processes, and allocate each child a piece of the problem. In this and other scenarios, it is important that processes be able to synchronize with each other. The wait(&status) function provides one mechanism in which two processes can re-synchronize at some point in their executions. It causes a parent process to be suspended until some child process terminates. In some ways, it is a specialized version of the sleep(x) function which causes a process to suspend itself for x seconds.

Write a program that will create a child process. First, run the program without any wait or sleep statements. Then, modify the program to have the child sleep for 5 seconds and have the parent wait for the child to finish sleeping. Put print messages in the program such that you can keep track of where each process is as a function of time. You can also (optionally) print out the time that each message prints too (or even the elapsed time since program start). Remember to flush the print buffers! For example, the following strings would enable you to compare the time-based execution with and without the parent waiting. [10 pts]

Child going to sleep.

Parent starting wait.

Child finished sleeping.

Parent finished wait.

12) Signals provide a method for transmitting software interrupts to processes. They are used by the kernel to deal with certain kinds of error conditions (e.g., floating point overflow). Some common signal types are listed in Tanenbaum figure 1-9. Signals also enable the user to interactively abort processes running in the foreground of their command shell by typing control-c. If a signal is sent to a process that has not explicitly declared a method to deal with that type of signal, the process is simply aborted. Processes can specify protocols for handling a signal by providing a function to be called upon receipt of that signal. In some operating system implementations (but not Knoppix), after a signal has been caught, it is necessary to re-enable the signal catching; otherwise, if another signal of the same type arrives before the signal catching is re-enabled, the process is aborted. A process can also choose to ignore a certain type of signal.

a) Write a program that simply has five successive sleep(1) statements in it. Before each call to sleep, print out a message such as "Sleep #1", "Sleep #2", etc. After the final sleep, print out "Program exiting". Run the program interactively and press control-c at various points in its execution. [6 pts]

b) Use a system call (such as signal(SIGINT, SIG_IGN)) to augment the program above such that it ignores control-c. Include the header file <signal.h>. Verify that your program, once started, cannot be interrupted by control-c. [7 pts]

c) Now provide an interrupt handler function that will catch the control-c signal. Put a print statement inside the interrupt handler (e.g., "Jumped to interrupt handler"). Run the program and press control-c at various points. Verify that your program jumps to the interrupt handler code when you press control-c. What happens after the interrupt handler is executed? Document and explain what happens. [12 pts]

13) Signals can also be pre-programmed to occur after a specified amount of time. The function alarm(t) arranges for a SIGALRM type signal to be sent to the process after t seconds. If alarm is called with t = 0, any previously set alarm which has not yet been executed is cancelled. Write a program that will prompt the user for some input, allow the user a certain amount of time to respond (e.g., 10 seconds), and if no response is provided within the allotted time, an appropriate timeout message printed on the screen. [20 pts]

